

pyTeliumManager

Overview

This module allow you to manipulate your Ingenico payment device such as IWL250, iCT250 for instance.
Accept USB Emulated Serial Device or Native RS-232 Serial Link.

[image: Ingenico iWL250 Mobile Payment Device]
It is released under MIT license, see LICENSE for more
details. Be aware that no warranty of any kind is provided with this package.

Copyright (C) 2017 Ahmed TAHRI <ahmed(at)tahri.space>

Features

	Ask for payment in any currency.

	Verify transaction afterward and extract payment source data if needed.

Contents:

	Requirements
	Libs

	Device

	Installation
	From PyPI

	From git via dev-master

	Classes
	Transaction details

	Transaction results

	Device management

	Native serial proxy class

	Exceptions

	Constants

	Example
	Most basic usage

	Create TeliumAsk instance from static method

	Use Ingenico payment device thought not emulated serial link

Indices and tables

	Index

	Module Index

	Search Page

Requirements

This package is intended to be cross-platform. Unix, Linux and NT systems are supported.

Libs

	Python >= 2.7 or Python >= 3.4

	pySerial >= 3.3

	pyCountry >= 17.0

Device

In order to accept communication of any kind, configure device as follows:

	Press “F” button.

	Press 0 - Telium Manager

	Press 5 - Init.

	Press 1 - Settings

	Select - Cashdraw/Checkout connect.

	Select “Enable”

	Then select your preferred interface (USB, COM1, COM2)

Finally, reboot your device.

Installation

This installs a package that can be used from Python (import telium).

To install for all users on the system, administrator rights (root)
may be required.

From PyPI

pyTeliumManager can be installed from PyPI:

pip install pyTeliumManager

From git via dev-master

You can install from dev-master branch using git:

git clone https://github.com/Ousret/pyTeliumManager.git
cd pyTeliumManager/
python setup.py install

Classes

Transaction details

	
class TeliumAsk

	
	
__init__(pos_number, answer_flag, transaction_type, payment_mode, currency_numeric, delay, authorization, amount)

	
	Parameters

	
	pos_number (str) – Checkout unique identifier from ‘01’ to ‘99’.

	answer_flag (str) – Answer report size. use TERMINAL_ANSWER_SET_FULLSIZED for complete details or TERMINAL_ANSWER_SET_SMALLSIZED
for limited answer report. Limited report does not show payment source id, e.g. credit card numbers.

	transaction_type (str) – If transaction is about CREDIT, DEBIT, etc.. .
Use at least one of listed possible values:
TERMINAL_MODE_PAYMENT_DEBIT,
TERMINAL_MODE_PAYMENT_CREDIT,
TERMINAL_MODE_PAYMENT_REFUND,
TERMINAL_MODE_PAYMENT_AUTO.

	payment_mode (str) – Type of payment support.
Use at least one of listed possible values:
TERMINAL_TYPE_PAYMENT_CARD,
TERMINAL_TYPE_PAYMENT_CHECK,
TERMINAL_TYPE_PAYMENT_AMEX,
TERMINAL_TYPE_PAYMENT_CETELEM,
TERMINAL_TYPE_PAYMENT_COFINOGA,
TERMINAL_TYPE_PAYMENT_DINERS,
TERMINAL_TYPE_PAYMENT_FRANFINANCE,
TERMINAL_TYPE_PAYMENT_JCB,
TERMINAL_TYPE_PAYMENT_ACCORD_FINANCE,
TERMINAL_TYPE_PAYMENT_MONEO,
TERMINAL_TYPE_PAYMENT_CUP,
TERMINAL_TYPE_PAYMENT_FINTRAX_EMV,
TERMINAL_TYPE_PAYMENT_OTHER.

	currency_numeric (str) – Currency ISO format.
Two ISO currency are available as constant.
TERMINAL_NUMERIC_CURRENCY_EUR: EUR - € - ISO;978.
TERMINAL_NUMERIC_CURRENCY_USD: USD - $ - ISO;840.

	delay (str) – Describe if answer should be immediate (without valid status) or after transaction.
Use at least one of listed possible values:
TERMINAL_REQUEST_ANSWER_WAIT_FOR_TRANSACTION,
TERMINAL_REQUEST_ANSWER_INSTANT.

	authorization (str) – Describe if the terminal has to manually authorize payment.

Use at least one of listed possible values:
TERMINAL_FORCE_AUTHORIZATION_ENABLE,
TERMINAL_FORCE_AUTHORIZATION_DISABLE.

	amount (float) – Payment amount, min 0.01, max 99999.99.

This object is meant to be translated into a bytes sequence and transferred to your terminal.

	
encode()

	
	Returns

	Raw string array with payment information

	Return type

	str

	Raises

	SequenceDoesNotMatchLengthException – Will be raised if the string sequence doesn’t match required length. Check your instance params.

Translate object into a string sequence ready to be sent to device.

	
static decode(data)

	
	Parameters

	data (bytes) – Raw bytes sequence to be converted into TeliumAsk instance.

	Returns

	Create a new TeliumAsk.

	Return type

	TeliumAsk

	Raises

	
	LrcChecksumException – Will be raised if LRC checksum doesn’t match.

	SequenceDoesNotMatchLengthException – Will be raised if the string sequence doesn’t match required length.

Create a new instance of TeliumAsk from a bytes sequence previously generated with encode().
This is no use in a production environment.

	
static new_payment(amount, payment_mode='debit', target_currency='USD', checkout_unique_id='1', wait_for_transaction_to_end=True, collect_payment_source_info=True, force_bank_verification=False)

	
	Parameters

	
	amount (float) – Amount requested

	payment_mode (str) – Specify transaction type. (debit, credit or refund)

	target_currency (str) – Target currency, must be written in letters. (EUR, USD, etc..)

	checkout_unique_id (str) – Unique checkout identifer.

	wait_for_transaction_to_end (bool) – Set to True if you need valid transaction status otherwise, set it to False.

	collect_payment_source_info (bool) – If you want to retrieve specifics data about payment source identification.

	force_bank_verification (bool) – Set it to True if your business need to enforce payment verification.

	Returns

	Ready to use TeliumAsk instance

	Return type

	TeliumAsk

Create new TeliumAsk in order to prepare payment.
Most commonly used.

Transaction results

	
class TeliumResponse

	
	
__init__(pos_number, transaction_result, amount, payment_mode, report, currency_numeric, private)

	
	Parameters

	
	pos_number (str) – Checkout unique identifier from ‘01’ to ‘99’.

	transaction_result (int) – Transaction result.

	amount (float) – Payment authorized/acquired amount.

	payment_mode (str) – Type of payment support.

	report (str) – Contains payment source unique identifier like credit-card numbers when fullsized report is enabled.

	currency_numeric (str) – Currency ISO format.

	private (str) – If supported by your device, contains transaction unique identifier.

	
has_succeeded

	
	Getter

	True if transaction has been authorized, False otherwise.

	Type

	bool

	
report

	
	Getter

	Contain data like the card numbers for instance. Should be handled wisely.

	Type

	str

	
transaction_id

	
	Getter

	If supported by your device, contains transaction unique identifier.

	Type

	bool

	
card_id

	
	Getter

	Read card numbers if available.

	Type

	str|None

	
card_id_sha512

	
	Getter

	Return payment source id hash repr (sha512)

	Type

	str|None

	
card_type

	
	Getter

	Return if available payment card type

	Type

	payment_card_identifier.PaymentCard|None

Device management

	
class Telium

	
	
__init__(path='/dev/ttyACM0', baudrate=9600, timeout=1, open_on_create=True, debugging=False)

	
	Parameters

	
	path – Device path.

	baudrate (int) – Baud rate such as 9600 or 115200 etc.
Constructor do recommend to set it as 9600.

	timeout (float) – Set a read timeout value.

	open_on_create (bool) – Specify if device should be immedialty opened on instance creation.

	debugging (bool) – Set it to True if you want to diagnose your device. Will print to stdout bunch of useful data.

The port is immediately opened on object creation if open_on_create toggle is True.

path is the device path: depending on operating system. e.g.
/dev/ttyACM0 on GNU/Linux or COM3 on Windows. Please be aware
that a proper driver is needed on Windows in order to create an emulated serial device.

Possible values for the parameter timeout which controls the behavior
of the device instance:

	timeout = None: wait forever / until requested number of bytes
are received, not recommended.

	timeout = 0: non-blocking mode, return immediately in any case,
returning zero or more, up to the requested number of bytes, use it only when your computer is really fast unless
you don’t care about reliability.

	timeout = x: set timeout to x seconds (float allowed)
returns immediately when the requested number of bytes are available,
otherwise wait until the timeout expires and return all bytes that
were received until then.

	
static get()

	
	Returns

	Fresh new Telium instance or None

	Return type

	Telium|None

Auto-create a new instance of Telium. The device path will be inferred based on most common location.
This won’t be reliable if you have more than one emulated serial device plugged-in. Does not work on NT platform.

	
ask(telium_ask)

	
	Parameters

	telium_ask (TeliumAsk) – Payment details

	Returns

	True if device has accepted it, False otherwise.

	Return type

	bool

Initialize payment to terminal

	
verify(telium_ask)

	
	Parameters

	telium_ask (TeliumAsk) – Payment details previously used on ask()

	Returns

	Transaction results as TeliumResponse, None if nothing was caught from device.

	Return type

	TeliumResponse|None

Wait for answer and convert it to TeliumResponse.

	
close()

	
	Returns

	True if device was previously opened and now closed. False otherwise.

	Return type

	bool

Close device if currently opened. Recommended practice, don’t let Python close it from garbage collector.

	
timeout

	
	Getter

	Current timeout set on read.

	Type

	float

Native serial proxy class

Use this class instead of Telium if you’re using native serial conn, see examples.

	
class TeliumNativeSerial

	

Exceptions

	
exception SignalDoesNotExistException

	Trying to send a unknown signal to device.

	
exception DataFormatUnsupportedException

	Exception raised when trying to send something other than a string sequence to device.

	
exception TerminalInitializationFailedException

	Exception raised when your device doesn’t respond with ‘ACK’ signal when receiving ‘ENQ’ signal.
Could mean that the device is busy or not well configured.

	
exception TerminalUnrecognizedConstantException

	Exception raised when you’ve built a TeliumAsk instance without proposed constant from package.

	
exception LrcChecksumException

	Exception raised when your raw bytes sequence does not match computed LRC with actual one from the sequence.
Could mean that your serial/usb conn isn’t stable.

	
exception SequenceDoesNotMatchLengthException

	Exception raised when trying to translate object via encode() or decode() doesn’t match required output length.
Could mean that your device is currently unsupported.

	
exception IllegalAmountException

	Exception raised when asking for an amount is bellow TERMINAL_MINIMAL_AMOUNT_REQUESTABLE and higher than TERMINAL_MAXIMAL_AMOUNT_REQUESTABLE.

Constants

Answer flag

Fullsized report contains payment unique identifier like credit-card numbers, smallsized does not.

	
TERMINAL_ANSWER_SET_FULLSIZED

	

	
TERMINAL_ANSWER_SET_SMALLSIZED

	

Transaction type

	
TERMINAL_MODE_PAYMENT_DEBIT

	

	
TERMINAL_MODE_PAYMENT_CREDIT

	

	
TERMINAL_MODE_PAYMENT_REFUND

	

	
TERMINAL_MODE_PAYMENT_AUTO

	

Payment mode

	
TERMINAL_TYPE_PAYMENT_CARD

	

	
TERMINAL_TYPE_PAYMENT_CHECK

	

	
TERMINAL_TYPE_PAYMENT_AMEX

	

	
TERMINAL_TYPE_PAYMENT_CETELEM

	

	
TERMINAL_TYPE_PAYMENT_COFINOGA

	

	
TERMINAL_TYPE_PAYMENT_DINERS

	

	
TERMINAL_TYPE_PAYMENT_FRANFINANCE

	

	
TERMINAL_TYPE_PAYMENT_JCB

	

	
TERMINAL_TYPE_PAYMENT_ACCORD_FINANCE

	

	
TERMINAL_TYPE_PAYMENT_MONEO

	

	
TERMINAL_TYPE_PAYMENT_CUP

	

	
TERMINAL_TYPE_PAYMENT_FINTRAX_EMV

	

	
TERMINAL_TYPE_PAYMENT_OTHER

	

Delay

Instant answer won’t contain a valid transaction status.

	
TERMINAL_REQUEST_ANSWER_WAIT_FOR_TRANSACTION

	

	
TERMINAL_REQUEST_ANSWER_INSTANT

	

Authorization

Forced authorization control isn’t recommended because it could be significantly slower.
You might have some ext. fees when using GPRS based payment device.

	
TERMINAL_FORCE_AUTHORIZATION_ENABLE

	

	
TERMINAL_FORCE_AUTHORIZATION_DISABLE

	

Example

Most basic usage

Example of usage:

Open device
my_device = Telium('/dev/ttyACM0')

Construct our payment infos
my_payment = TeliumAsk(
 '1', # Checkout ID 1
 TERMINAL_ANSWER_SET_FULLSIZED, # Ask for fullsized report
 TERMINAL_MODE_PAYMENT_DEBIT, # Ask for debit
 TERMINAL_TYPE_PAYMENT_CARD, # Using a card
 TERMINAL_NUMERIC_CURRENCY_EUR, # Set currency to EUR
 TERMINAL_REQUEST_ANSWER_WAIT_FOR_TRANSACTION, # Wait for transaction to end before getting final answer
 TERMINAL_FORCE_AUTHORIZATION_DISABLE, # Let device choose if we should ask for authorization
 12.5 # Ask for 12.5 EUR
)

Send payment infos to device
my_device.ask(my_payment)

Wait for terminal to answer
my_answer = my_device.verify(my_payment)

if my_answer is not None:
 # Print answered data from terminal
 print(my_answer.__dict__)

Create TeliumAsk instance from static method

Create instance:

my_payment = TeliumAsk.new_payment(
 12.5, # Amount you want
 payment_mode='debit', # other mode: credit or refund.
 target_currency='EUR',
 wait_for_transaction_to_end=True, # If you need valid transaction status
 collect_payment_source_info=True, # If you need to identify payment source
 force_bank_verification=False # Set it to True if you absolutly need more guarantee in this transaction. Could result in slower authorization from bank.
)

Use Ingenico payment device thought not emulated serial link

[image: Ingenico RS 232 Cable]
Init:

It's as easy as this
my_device = TeliumNativeSerial('/dev/ttyS4')

Index

 _
 | A
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | N
 | R
 | S
 | T
 | V

_

 	
 	__init__() (Telium method)

 	(TeliumAsk method)

 	(TeliumResponse method)

A

 	
 	ask() (Telium method)

C

 	
 	card_id (TeliumResponse attribute)

 	card_id_sha512 (TeliumResponse attribute)

 	
 	card_type (TeliumResponse attribute)

 	close() (Telium method)

D

 	
 	DataFormatUnsupportedException

 	
 	decode() (TeliumAsk static method)

E

 	
 	encode() (TeliumAsk method)

G

 	
 	get() (Telium static method)

H

 	
 	has_succeeded (TeliumResponse attribute)

I

 	
 	IllegalAmountException

L

 	
 	LrcChecksumException

N

 	
 	new_payment() (TeliumAsk static method)

R

 	
 	report (TeliumResponse attribute)

S

 	
 	SequenceDoesNotMatchLengthException

 	
 	SignalDoesNotExistException

T

 	
 	Telium (built-in class)

 	TeliumAsk (built-in class)

 	TeliumNativeSerial (built-in class)

 	TeliumResponse (built-in class)

 	TERMINAL_ANSWER_SET_FULLSIZED (built-in variable)

 	TERMINAL_ANSWER_SET_SMALLSIZED (built-in variable)

 	TERMINAL_FORCE_AUTHORIZATION_DISABLE (built-in variable)

 	TERMINAL_FORCE_AUTHORIZATION_ENABLE (built-in variable)

 	TERMINAL_MODE_PAYMENT_AUTO (built-in variable)

 	TERMINAL_MODE_PAYMENT_CREDIT (built-in variable)

 	TERMINAL_MODE_PAYMENT_DEBIT (built-in variable)

 	TERMINAL_MODE_PAYMENT_REFUND (built-in variable)

 	TERMINAL_REQUEST_ANSWER_INSTANT (built-in variable)

 	TERMINAL_REQUEST_ANSWER_WAIT_FOR_TRANSACTION (built-in variable)

 	TERMINAL_TYPE_PAYMENT_ACCORD_FINANCE (built-in variable)

 	
 	TERMINAL_TYPE_PAYMENT_AMEX (built-in variable)

 	TERMINAL_TYPE_PAYMENT_CARD (built-in variable)

 	TERMINAL_TYPE_PAYMENT_CETELEM (built-in variable)

 	TERMINAL_TYPE_PAYMENT_CHECK (built-in variable)

 	TERMINAL_TYPE_PAYMENT_COFINOGA (built-in variable)

 	TERMINAL_TYPE_PAYMENT_CUP (built-in variable)

 	TERMINAL_TYPE_PAYMENT_DINERS (built-in variable)

 	TERMINAL_TYPE_PAYMENT_FINTRAX_EMV (built-in variable)

 	TERMINAL_TYPE_PAYMENT_FRANFINANCE (built-in variable)

 	TERMINAL_TYPE_PAYMENT_JCB (built-in variable)

 	TERMINAL_TYPE_PAYMENT_MONEO (built-in variable)

 	TERMINAL_TYPE_PAYMENT_OTHER (built-in variable)

 	TerminalInitializationFailedException

 	TerminalUnrecognizedConstantException

 	timeout (Telium attribute)

 	transaction_id (TeliumResponse attribute)

V

 	
 	verify() (Telium method)

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/5cae9906e50f141f859f805d75e534c32db1e253.jpg

_images/iwl250-inthehand-fr.jpg

_static/plus.png

nav.xhtml

 Table of Contents

 		
 pyTeliumManager

 		
 Requirements

 		
 Libs

 		
 Device

 		
 Installation

 		
 From PyPI

 		
 From git via dev-master

 		
 Classes

 		
 Transaction details

 		
 Transaction results

 		
 Device management

 		
 Native serial proxy class

 		
 Exceptions

 		
 Constants

 		
 Example

 		
 Most basic usage

 		
 Create TeliumAsk instance from static method

 		
 Use Ingenico payment device thought not emulated serial link

_static/up.png

_static/up-pressed.png

